Finite-temperature effective potentials in models with extended Higgs sector: typical scenarios

Rykova E.N. & Dolgopolov M.V.

Samara National Research University The XXIII International Workshop High Energy Physics and Quantum Field Theory June 26– July 3, 2017 Yaroslavl, Russia

June 27, 2017

• • = • • = •

Introduction Finite temperature corrections of squarks Minimal supersymmetric standard model Next-to-minimal supersymmetric standard model Conclusion

Outline

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Introduction Finite temperature corrections of squarks Minimal supersymmetric standard model Next-to-minimal supersymmetric standard model Conclusion

Outline

2 Finite temperature corrections of squarks

イロト イポト イヨト イヨト

Introduction Finite temperature corrections of squarks Minimal supersymmetric standard model Next-to-minimal supersymmetric standard model Conclusion

Outline

1 Introduction

- Pinite temperature corrections of squarks
- 3 Minimal supersymmetric standard model
 - Effective potential of MSSM
 - Parameters of Effective Potential of MSSM

- - E - - E

Introduction Finite temperature corrections of squarks Minimal supersymmetric standard model Next-to-minimal supersymmetric standard model Conclusion

Outline

Introduction

- Pinite temperature corrections of squarks
- 3 Minimal supersymmetric standard model
 - Effective potential of MSSM
 - Parameters of Effective Potential of MSSM
- 4 Next-to-minimal supersymmetric standard model
 - Effective potential of NMSSM
 - Parameters of Effective Potential of NMSSM

• • • • •

Introduction Finite temperature corrections of squarks Minimal supersymmetric standard model Next-to-minimal supersymmetric standard model Conclusion

Outline

Introduction

- Pinite temperature corrections of squarks
- 3 Minimal supersymmetric standard model
 - Effective potential of MSSM
 - Parameters of Effective Potential of MSSM
- 4 Next-to-minimal supersymmetric standard model
 - Effective potential of NMSSM
 - Parameters of Effective Potential of NMSSM

5 Conclusion

• • = • • = •

Introduction

In the simple isoscalar model the standard-like Higgs potential

$$U(\varphi) = -rac{1}{2}\mu^2 \varphi^2 + rac{1}{4}\lambda \varphi^4.$$

Two solutions

$$u(0) = 0 ext{ and }
u^2(T) = rac{\mu^2}{\lambda} - rac{T^2}{4},$$

demonstrate the second order phase transition at the critical temperature

$$T_c = \frac{2\mu}{\sqrt{\lambda}} = 2\nu(0),$$

The thermal Higgs boson mass

$$m_h^2 = -\mu^2 + \lambda \frac{T^2}{4}.$$

Introduction

In a number of analyses the MSSM finite-temperature effective potential is taken in the representation

 $V_{eff}(v, T) = V_0(v_1, v_2, 0) + V_1(m(v), 0) + V_1(T) + V_{ring}(T), (1)$

- V_0 is the tree-level MSSM two-doublet potential at the SUSY scale
- V₁ is the (non-temperature) one-loop resumed Coleman-Weinberg term, dominated by stop and sbottom contributions
- $V_1(T)$ is the one-loop temperature term
- V_{ring} is the correction of re-summed leading infrared contribution from multi-loop ring (or daisy) diagrams

Finite temperature corrections of squarks

In the finite temperature field theory Feynman diagrams with boson propagators, containing Matsubara frequencies $\omega_n = 2\pi nT$ $(n = 0, \pm 1, \pm 2, ...)$, lead to structures of the form

$$I[m_1, m_2, ..., m_b] = T \sum_{n = -\infty}^{\infty} \int \frac{d\mathbf{k}}{(2\pi)^3} \prod_{i=1}^{b} \frac{(-1)^b}{(\mathbf{k}^2 + \omega_n^2 + m_j^2)}, \quad (2)$$

k is the three-dimensional momentum in a system with the temperature T.

イヨト イヨト イヨト

Finite temperature corrections of squarks

At $n \neq 0$ the result is

$$I[m_1, m_2, ..., m_b] = 2T (2\pi T)^{3-2b} \frac{(-1)^b \pi^{3/2}}{(2\pi)^3} \frac{\Gamma(b-3/2)}{\Gamma(b)} S(M, b-3/2),$$
(3)

where

$$S(M, b-3/2) = \int \{dx\} \sum_{n=1}^{\infty} \frac{1}{(n^2 + M^2)^{b-3/2}}, \qquad M^2 \equiv \left(\frac{m}{2\pi T}\right)^2.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Finite temperature corrections of squarks

We calculate the integral

$$J_0[a_1,a_2] = \int rac{d{f k}}{(2\pi)^3} rac{1}{({f k}^2+a_1^2)({f k}^2+a_2^2)} = rac{1}{4\pi(a_1+a_2)},$$

taking a residue in the spherical coordinate system. $a_{1;2}^2$ are the sums of squared frequency and squared mass. Derivatives of J_0 with respect to a_1 and a_2 can be used for calculation of integrals

$$J_1[a_1,a_2] = \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1}{(\mathbf{k}^2 + a_1^2)^2(\mathbf{k}^2 + a_2^2)} = -\frac{1}{2a_1} \frac{\partial J_0}{\partial a_1} = \frac{1}{8\pi a_1(a_1 + a_2)^2},$$

$$J_2[a_1, a_2] = \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1}{(\mathbf{k}^2 + a_1^2)^2 (\mathbf{k}^2 + a_2^2)^2} = \frac{1}{4a_1a_2} \frac{\partial^2 J_0}{\partial a_1 \partial a_2} = \frac{1}{8\pi a_1 a_2 (a_1 + a_2)^3}$$

Finite temperature corrections of squarks

Thus, the procedure of Feynman parametrization is not used. Substituting $a_1^2 = 4\pi^2 n^2 T^2 + m_1^2$ and $a_2^2 = 4\pi^2 n^2 T^2 + m_2^2$ to (??) and taking the sum over Matsubara frequencies after the integration we get

$$I_0[m_1, m_2] = \sum_{n=-\infty, n\neq 0}^{\infty} \frac{1}{4\pi(\sqrt{4\pi^2 n^2 T^2 + m_1^2} + \sqrt{4\pi^2 n^2 T^2 + m_2^2})}$$

or, after redefinition of mass parameters $M_{1;2} = m_{1;2}/2\pi T$ the temperature corrections to effective potential are expressed by summed integrals.

・ロッ ・雪 ・ ・ ヨ ・ ・ 日 ・

Finite temperature corrections of squarks

The sum of integrals can be expressed by means of the generalized zeta-function.

$$I_0[M_a, M_b] = \frac{1}{16\pi^2 T} \int_0^1 dx \ \zeta(2, \frac{1}{2}, M^2),$$

where $\zeta(u, s, t)$ is the generalized Hurwitz zeta-function

$$\zeta(u,s,t)=\sum_{n=1}^{\infty}\frac{1}{(n^u+t)^s}.$$

• • = • • = •

Finite temperature corrections of squarks

So in the case under consideration the sums of integrals can be calculated by differentiation with respect to mass parameters participating in $M = M(M_a, M_b, x)$. Differentiation increases the power *s* in the denominator giving convergent integrals

伺下 イヨト イヨト

Effective potential of MSSM

In two-doublet model there are two identical SU(2) doublets of complex scalar fields Φ_1 and Φ_2

$$\Phi_1 = \begin{pmatrix} \phi_1^+(x) \\ \phi_1^0(x) \end{pmatrix}, \ \Phi_2 = \begin{pmatrix} \phi_2^+(x) \\ \phi_2^0(x) \end{pmatrix}$$

with nonzero vacuum expectation values

$$\left< \Phi_1 \right> = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v_1 \end{array} \right), \qquad \left< \Phi_2 \right> = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v_2 \end{array} \right).$$

Neutral components of doublets

$$\phi_1^0(x) = \frac{1}{\sqrt{2}}(v_1 + \eta_1 + i\chi_1), \ \phi_2^0(x) = \frac{1}{\sqrt{2}}(v_2 + \eta_2 + i\chi_2).$$

• • = • • = •

Effective potential of MSSM

The most general renormalizable hermitian $SU(2) \times U(1)$ invariant potential:

$$\begin{split} & U(\Phi_{1}, \Phi_{2}) = -\mu_{1}^{2}(\Phi_{1}^{\dagger}\Phi_{1}) - \mu_{2}^{2}(\Phi_{2}^{\dagger}\Phi_{2}) - \mu_{12}^{2}(\Phi_{1}^{\dagger}\Phi_{2}) - \mu_{12}^{2}(\Phi_{2}^{\dagger}\Phi_{1}) + \\ & + \frac{\lambda_{1}}{2}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \\ & + \frac{\lambda_{5}}{2}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2}) + \frac{\lambda_{5}}{2}(\Phi_{2}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{1}) + \\ & + \lambda_{6}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{1}^{\dagger}\Phi_{2}) + \frac{\lambda_{6}}{\lambda_{6}}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{1}) + \\ & + \lambda_{7}(\Phi_{2}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2}) + \frac{\lambda_{7}}{\lambda_{7}}(\Phi_{2}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) \end{split}$$
with effective real parameters $\mu_{1}^{2}, \ \mu_{2}^{2}, \ \lambda_{1}, \dots, \lambda_{4}$ and complex parameters $\mu_{12}^{2}, \ \lambda_{5}, \ \lambda_{6}, \ \lambda_{7}. \end{split}$

Parameters of Effective Potential of MSSM

In the tree approximation on the energy scale M_{SUSY} , the parameters λ_{1-7} are real and are expressed using the coupling constants g_1 and g_2 of electroweak group of the gauge symmetry $SU(2) \otimes U(1)$ as follows:

$$\begin{split} \lambda_1(M_{SUSY}) &= \lambda_2(M_{SUSY}) = \frac{1}{4} \left(g_2^2(M_{SUSY}) + g_1^2(M_{SUSY}) \right), \\ \lambda_3(M_{SUSY}) &= \frac{1}{4} \left(g_2^2(M_{SUSY}) - g_1^2(M_{SUSY}) \right), \\ \lambda_4(M_{SUSY}) &= -\frac{1}{2} g_2^2(M_{SUSY}), \\ \lambda_5(M_{SUSY}) &= \lambda_6(M_{SUSY}) = \lambda_7(M_{SUSY}) = 0. \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Parameters of Effective Potential of MSSM

The supersymmetric scalar potential of interaction of Higgs bosons with the third generation quark superpartners on the tree level has the form

$$\mathcal{V}^{0} = \mathcal{V}_{M} + \mathcal{V}_{\Gamma} + \mathcal{V}_{\Lambda} + \mathcal{V}_{\widetilde{Q}} \,,$$

$$\begin{split} \mathcal{V}_{M} &= (-1)^{i+j} m_{ij}^{2} \Phi_{i}^{\dagger} \Phi_{j} + M_{\widetilde{Q}}^{2} \left(\widetilde{Q}^{\dagger} \widetilde{Q} \right) + M_{\widetilde{U}}^{2} \widetilde{U}^{*} \widetilde{U} + M_{\widetilde{D}}^{2} \widetilde{D}^{*} \widetilde{D} , \\ \mathcal{V}_{\Gamma} &= \Gamma_{i}^{D} \left(\Phi_{i}^{\dagger} \widetilde{Q} \right) \widetilde{D} + \Gamma_{i}^{U} \left(i \Phi_{i}^{T} \sigma_{2} \widetilde{Q} \right) \widetilde{U} + \Gamma_{i}^{D} \left(\widetilde{Q}^{\dagger} \Phi_{i} \right) \widetilde{D}^{*} - \Gamma_{i}^{U} \left(i \widetilde{Q}^{\dagger} \sigma_{2} \Phi_{i}^{*} \right) \widetilde{U}^{*} , \\ \mathcal{V}_{\Lambda} &= \Lambda_{ik}^{jl} \left(\Phi_{i}^{\dagger} \Phi_{j} \right) \left(\Phi_{k}^{\dagger} \Phi_{l} \right) + \left(\Phi_{i}^{\dagger} \Phi_{j} \right) \left[\Lambda_{ij}^{Q} \left(\widetilde{Q}^{\dagger} \widetilde{Q} \right) + \Lambda_{ij}^{U} \widetilde{U}^{*} \widetilde{U} + \Lambda_{ij}^{D} \widetilde{D}^{*} \widetilde{D} \right] + \\ &+ \overline{\Lambda}_{ij}^{Q} \left(\Phi_{i}^{\dagger} \widetilde{Q} \right) \left(\widetilde{Q}^{\dagger} \Phi_{j} \right) + \frac{1}{2} \left[\Lambda \epsilon_{ij} \left(i \Phi_{i}^{T} \sigma_{2} \Phi_{j} \right) \widetilde{D}^{*} \widetilde{U} + \mathfrak{s.c.} \right] , i, j, \, k, l = 1, 2 , \\ \mathcal{V}_{\widetilde{Q}} \text{ denotes the terms of interaction of four scalar quarks.} \end{split}$$

• • = • • = •

Parameters of Effective Potential of MSSM

Calculation of the finite-temperature diagrams for the general case of complex-valued μ and $A_{t,b}$ gives the result

$$\begin{split} \Delta\lambda_1^{thr} &= 3h_t^4 |\mu|^4 l_2[m_Q, m_U] + 3h_b^4 |A_b|^4 l_2[m_Q, m_D] + \\ &+ h_t^2 |\mu|^2 (-\frac{g_1^2 - 3g_2^2}{2} l_1[m_Q, m_U] + 2g_1^2 l_1[m_U, m_Q]) \\ &+ h_b^2 |A_b|^2 (\frac{12h_b^2 - g_1^2 - 3g_2^2}{2} l_1[m_Q, m_D] + (6h_b^2 - g_1^2) l_1[m_D, m_Q]) \end{split}$$

$$\begin{split} \Delta\lambda_2^{thr} &= 3h_t^4 |A_t|^4 I_2[m_Q, m_U] + 3h_b^4 |\mu|^4 I_2[m_Q, m_D] + \\ &+ h_b^2 |\mu|^2 (\frac{g_1^2 + 3g_2^2}{2} I_1[m_Q, m_D] + g_1^2 I_1[m_D, m_Q]) + \\ &+ h_t^2 |A_t|^2 (\frac{12h_t^2 + g_1^2 - 3g_2^2}{2} I_1[m_Q, m_U] + (6h_t^2 - 2g_1^2) I_1[m_U, m_Q]) \end{split}$$

• • • • •

Bifurcation sets

N	Solutions	Hessian $H(\overline{v}_1, \overline{v}_2)$	local minimum conditions
1	$\overline{v}_1 = 0, \qquad \overline{v}_2 = 0$	$-\left(\begin{array}{cc}\overline{\mu_1}^2 & 0\\ 0 & \overline{\mu_2}^2\end{array}\right)$	$\overline{\mu}_1^2 + \overline{\mu}_2^2 < 0, \qquad \overline{\mu}_1^2 \cdot \overline{\mu}_2^2 \ge 0$
2	$\overline{v}_1 = 0, \qquad \lambda_2 \overline{v}_2^2 - \overline{\mu}_2^2 = 0$	$\left(\begin{array}{cc} -\overline{\mu}_1^2+\frac{\lambda_{345}}{2}\overline{\nu}_2^2 & 0\\ 0 & 2\lambda_2\overline{\nu}_2^2 \end{array}\right)$	$\begin{split} &-\overline{\mu}_1^2+\overline{\nu}_2^2(2\lambda_2+\frac{1}{2}\lambda_{345})>0\\ &(-\overline{\mu}_1^2+\frac{1}{2}\lambda_{345}\overline{\nu}_2^2)\lambda_2\overline{\nu}_2^2\geq0 \end{split}$
3	$\overline{v}_2 = 0, \qquad \lambda_1 \overline{v}_2^2 - \overline{\mu}_1^2 = 0$	$\left(\begin{array}{cc} 2\lambda_{1}\overline{v}_{1}^2 & 0 \\ 0 & -\overline{\mu}_{2}^2 + \frac{\lambda_{245}}{2}\overline{v}_{1}^2 \end{array}\right)$	$\begin{split} &-\overline{\mu}_2^2+\overline{v}_1^2(2\lambda_1+\frac{1}{2}\lambda_{345})>0\\ &(-\overline{\mu}_2^2+\frac{1}{2}\lambda_{345}\overline{v}_1^2)\lambda_1\overline{v}_1^2\geq 0 \end{split}$
4	$\begin{split} \lambda_1 \overline{v}_1^2 + \frac{\lambda_{435}}{2} \overline{v}_2^2 - \overline{\mu}_1^2 &= 0, \\ \lambda_2 \overline{v}_2^2 + \frac{\lambda_{435}}{2} \overline{v}_1^2 - \overline{\mu}_2^2 &= 0 \end{split}$	$ \begin{pmatrix} 2\lambda_1 \overline{v}_1^2 & \lambda_{345} \overline{v}_1 \overline{v}_2 \\ \lambda_{345} \overline{v}_1 \overline{v}_2 & 2\lambda_2 \overline{v}_2^2 \end{pmatrix} $	$\begin{split} \lambda_1 \overline{v}_1^2 + \lambda_2 \overline{v}_2^2 > 0 \\ \overline{v}_1^2 \overline{v}_2^2 (4\lambda_1 \lambda_2 - \lambda_{345}^2) \geq 0 \end{split}$

Rykova E.N. Finite-temperature effective potentials in models with exten

イロト イポト イヨト イヨト

э

Introduction

Finite temperature corrections of squarks Minimal supersymmetric standard model

Next-to-minimal supersymmetric standard model Conclusion

Rykova E.N.

Finite-temperature effective potentials in models with externation

Effective potential of NMSSM

In the NMSSM two identical scalar SU(2) doublets of the complex scalar fields Φ_1 and Φ_2 are introduced

$$\Phi_1 = \begin{pmatrix} \phi_1^+(x) \\ \phi_1^0(x) \end{pmatrix} = \begin{pmatrix} -i\omega_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \eta_1 + i\chi_1) \end{pmatrix},$$
$$\Phi_2 = \begin{pmatrix} \phi_2^+(x) \\ \phi_2^0(x) \end{pmatrix} = \begin{pmatrix} -i\omega_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \eta_2 + i\chi_2) \end{pmatrix},$$

Singlet superfield *S*:

$$S=\frac{1}{\sqrt{2}}(v_3+s_1+is_2).$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Effective potential of NMSSM

The most general Hermitian form of the renormalized $SU(2) \times U(1)$ invariant potential for system of fields has the form:

$$\begin{split} U(\Phi_{1}, \Phi_{2}, S) &= -\mu_{1}^{2}(\Phi_{1}^{\dagger}\Phi_{1}) - \mu_{2}^{2}(\Phi_{2}^{\dagger}\Phi_{2}) - \mu_{3}^{2}S^{*}S - \mu_{12}^{2}(\Phi_{1}^{\dagger}\Phi_{2}) - \overset{*^{2}}{\mu_{12}}(\Phi_{2}^{\dagger}\Phi_{1}) \\ &+ \frac{\lambda_{1}}{2}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \\ &+ \frac{\lambda_{5}}{2}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2}) + \frac{\overset{*}{\lambda_{5}}}{2}(\Phi_{2}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{1}) + \\ &+ \lambda_{6}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{1}^{\dagger}\Phi_{2}) + \overset{*}{\lambda_{6}}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{1}) + \lambda_{7}(\Phi_{2}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2}) + \overset{*}{\lambda_{7}}(\Phi_{2}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) \\ &+ k_{1}(\Phi_{1}^{\dagger}\Phi_{1})S^{*}S + k_{2}(\Phi_{2}^{\dagger}\Phi_{2})S^{*}S + k_{3}(\Phi_{1}^{\dagger}\Phi_{2})S^{*}S + \overset{*}{k_{3}}(\Phi_{2}^{\dagger}\Phi_{1})S^{*}S + k_{4}(S^{*}S)^{2} + \\ &+ k_{5}(\Phi_{1}^{\dagger}\Phi_{1})S + k_{6}(\Phi_{2}^{\dagger}\Phi_{2})S + k_{7}(\Phi_{1}^{\dagger}\Phi_{2})S + \overset{*}{k_{7}}(\Phi_{2}^{\dagger}\Phi_{1})S^{*} + k_{8}S^{3}. \end{split}$$

周 ト イ ヨ ト イ ヨ

Parameters of Effective Potential of NMSSM

In the tree approximation on the energy scale M_{SUSY} , the parameters λ_i , κ_j expressed as:

$$\lambda_1 = \lambda_2 = \frac{g_1^2 + g_2^2}{8}, \ \lambda_3 = \frac{g_2^2 - g_1^2}{4}, \ \lambda_4 = -\frac{g_2^2}{2}, \qquad \lambda_5 = \lambda_6 = \lambda_7 = 0$$
(4)

$$k_1 = |\lambda|^2, \ k_2 = |\lambda|^2, \ k_3 = \lambda k^*, \ k_4 = |k|^2, \ k_5 = \lambda A_{\lambda}, \ k_6 = \frac{1}{3} k A_k,$$
 (5)

The free parameters of the model are chosen in the range possible values:

$$\begin{array}{ll} 1.0 < tg\beta \leq 60, & M_1 = M_2, & 100 \,\, {\rm GeV} \, \leq M_2 \leq 2000 \,\, {\rm GeV}, \\ 0.0001 \, \leq \lambda \leq 0.7, & 0 \, \leq \kappa \leq 0.65. \\ 0 \,\, {\rm GeV} \, \leq A_\lambda \leq 1000 \,\, {\rm GeV}, & -100 \,\, {\rm GeV} \, \leq A_\kappa \leq -10 \,\, {\rm GeV} \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Parameters of Effective Potential of NMSSM

The supersymmetric scalar potential of interaction of Higgs bosons with the third generation quark superpartners on the tree level has the form

$$\begin{split} V &= |y_u(\widetilde{Q}\epsilon H_u)|^2 + |y_d(\widetilde{Q}\epsilon H_d)|^2 + |y_u\widetilde{u}_R^*H_u^0 - y_d\widetilde{d}_R^*H_d^-|^2 + |y_d\widetilde{d}_R^*H_d^0 - y_d\widetilde{u}_R^*H_u^+|^2 - \\ -y_u(\widetilde{u}_R\widetilde{u}_L^*\lambda SH_d^0 + \widetilde{u}_R\widetilde{d}_L^*\lambda SH_d^- + c.c.) - y_d(\widetilde{d}_R\widetilde{d}_L^*\lambda SH_u^0 + \widetilde{d}_R\widetilde{d}_L^*\lambda SH_u^+ + c.c.) + \\ &+ \frac{g_2^2}{8}(4|H_d^\dagger\widetilde{Q}|^2 - 2(H_d^\dagger H_d)(\widetilde{Q}^\dagger\widetilde{Q}) + 4|H_u^\dagger\widetilde{Q}|^2 - 2(H_u^\dagger H_u)(\widetilde{Q}^\dagger\widetilde{Q})) + \\ &+ \frac{g_1^2}{2}(\frac{1}{6}(\widetilde{Q}^\dagger\widetilde{Q}) - \frac{2}{3}\widetilde{u}_R^*\widetilde{u}_R + \frac{1}{3}\widetilde{d}_R^*\widetilde{d}_R + \frac{1}{2}(H_u^\dagger H_u) - \frac{1}{2}(H_d^\dagger H_d))^2 + \\ &+ (\widetilde{u}_R^*y_uA_u(\widetilde{Q}^{T}\epsilon H_u) - \widetilde{d}_Ry_dA_d(\widetilde{Q}^{T}\epsilon H_d) + c.c.) \end{split}$$

4 冊 ト 4 三 ト 4 三 ト

Parameters of Effective Potential of NMSSM

The oneloop corrections to the parameters of effective potential

 $(y_u\lambda v_3)^4 I_2[m_Q, m_U]$

Rykova E.N. Finite-temperature effective potentials in models with exten

Parameters of Effective Potential of NMSSM

The oneloop corrections to the parameters of effective potential

Parameters of Effective Potential of NMSSM

The oneloop corrections to the parameters of effective potential

$$\begin{split} \Delta\lambda_1 &= h_u^4 \lambda^4 v_3^4 l_2[m_Q, m_U] + h_d^4 A_d^4 l_2[m_Q, m_D] + \\ &+ h_u^2 \lambda^2 v_3^2 \left(\left(\frac{g_2^2}{4} - \frac{g_1^2}{12} \right) l_1[m_Q, m_U] + \frac{1}{3} g_1^2 l_1[m_U, m_Q] \right) + \\ &+ h_d^2 A_d^2 \left(\left(h_d^2 - \frac{g_1^2}{12} - \frac{g_2^2}{4} \right) l_1[m_Q, m_D] + \left(h_d^2 - \frac{g_1^2}{6} \right) l_1[m_D, m_Q] \right) \\ &\Delta\lambda_2 &= h_u^4 A_u^4 l_2[m_Q, m_U] + h_d^4 \lambda^4 v_3^4 l_2[m_Q, m_D] + \\ &+ h_u^2 A_u^2 \left(\left(\frac{g_1^2}{12} - \frac{g_2^2}{4} \right) l_1[m_Q, m_U] + (h_u^2 - \frac{1}{3} g_1^2 l_1[m_U, m_Q] \right) + \\ &+ h_d^2 \lambda^2 v_3^2 \left(\left(\frac{g_1^2}{12} + \frac{g_2^2}{4} \right) l_1[m_Q, m_D] + \frac{g_1^2}{6} l_1[m_D, m_Q] \right) \end{split}$$

• • = • • = •

solutions	Hessian $H(v_1, v_2, v_3)$	local minimum conditions	
$v_1 = 0$ $v_2 = 0$ $v_3 = 0$	$\left(\begin{array}{ccc} -\mu_1^2 & 0 & 0 \\ 0 & -\mu_2^2 & 0 \\ 0 & 0 & -2\mu_3^2 \end{array}\right)$	$\begin{array}{l} -\mu_{1}^{2}-\mu_{2}^{2}-2\mu_{3}^{2}>0,\\ \mu_{1}^{2}\cdot\mu_{2}^{2}\cdot\mu_{3}^{2}<0. \end{array}$	
$v_1 \neq 0$ $v_2 = 0$ $v_3 = 0$	$\begin{pmatrix} v_{1}^{2}\lambda_{1} & 0 & 0\\ 0 & \frac{1}{2}v_{1}^{2}\lambda_{34} - \mu_{2}^{2} & k_{5}v_{1}\\ 0 & k_{5}v_{1} & k_{1}v_{1}^{2} - 2\mu_{3}^{2} \end{pmatrix}$	$\begin{split} k_1 v_1^2 &= \mu_2^2 - 2\mu_3^2 + \lambda_1 v_1^2 + \\ & \frac{1}{2} (\lambda_3 + \lambda_4) v_1^2 > 0, \\ & \lambda_1 v_1^2 \{ \left(\left(k_1 v_1^2 - 2\mu_3^2 \right) \\ & \left(\frac{1}{2} \lambda_{34} v_1^2 - \mu_2^2 \right) - k_5^2 v_1^2 \right) \} > 0. \end{split}$	
$v_1 = 0$ $v_2 \neq 0$ $v_3 = 0$	$\begin{pmatrix} \frac{1}{2}v_2^2\lambda_{34} - \mu_1^2 & 0 & k_5v_2 \\ 0 & v_2^2\lambda_2 & 0 \\ k_5v_2 & 0 & k_2v_2^2 - 2\mu_3^2 \end{pmatrix}$	$k_{2}v_{2}^{2} - \mu_{1}^{2} - 2\mu_{3}^{2} + \lambda_{2}v_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4})v_{2}^{2} > 0,$ $\lambda_{2}v_{2}^{2}\left\{\left(k_{2}v_{2}^{2} - 2\mu_{3}^{2}\right)\right.$ $\left(\frac{1}{2}\lambda_{34}v_{2}^{2} - \mu_{1}^{2}\right) - k_{5}^{2}v_{2}^{2}\right\} > 0.$	

Rykova E.N. & Dolgopolov M.V. Finite-temperature effective potentials in models with exter

Bifurcation sets

Solutions	Hessian $H(v_1, v_2, v_3)$	Local minimum con- ditions
$v_1 \neq 0$ $v_2 \neq 0$ $v_3 = 0$	$\begin{pmatrix} v_1^2 \lambda_1 & v_1 v_2 \lambda_{34} & 0 \\ v_1 v_2 (\lambda_3 + \lambda_4) & v_2^2 \lambda_2 & 0 \\ 0 & 0 & k_1 v_1^2 + 2k_3 v_2 v_1 + k_2 v_2^2 - 2\mu_3^2 \end{pmatrix}$	$Det > 0, \ Tr > 0$
$v_1 \neq 0$ $v_2 = 0$ $v_3 \neq 0$	$\begin{pmatrix} v_1^2 \lambda_1 & 0 & 2k_1 v_1 v_3 \\ 0 & \frac{1}{2} \left(\lambda_{34} v_1^2 + 2k_2 v_3^2 - 2\mu_2^2 \right) & k_3 v_1 v_3 \\ 2k_1 v_1 v_3 & k_3 v_1 v_3 & 2v_3 (3k_6 + 4k_4 v_3) \end{pmatrix}$	Det > 0, Tr > 0
$v_1 = 0$ $v_2 \neq 0$ $v_3 \neq 0$	$\begin{pmatrix} \frac{1}{2} \left(\lambda_{34} v_2^2 + 2k_1 v_3^2 - 2\mu_1^2 \right) & 0 & k_3 v_2 v_3 \\ 0 & v_2^2 \lambda_2 & 2k_2 v_2 v_3 \\ k_3 v_2 v_3 & 2k_2 v_2 v_3 & 2v_3 (3k_6 + 4k_4 v_3) \end{pmatrix}$	Det > 0, Tr > 0
$v_{1} \neq 0$ $v_{2} \neq 0$ $v_{3} \neq 0$	$\begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix}$ $H_{11} = v_1^2 \lambda_1 - v_2 v_3 (k_5 + k_3 v_3) / v_1,$ $H_{12} = H_{21} = v_3 (k_5 + k_3 v_3) + v_1 v_2 (\lambda_3 + \lambda_4),$ $H_{42} = H_{42} - k_{33} + 2(k_3 + k_3 v_3) + v_{33} + v_{33$	***
	$\Pi_{13} = \Pi_{31} = \kappa_5 v_2 + 2(\kappa_1 v_1 + \kappa_3 v_2) v_3, \qquad \qquad \square \Rightarrow \blacksquare \blacksquare \Rightarrow \blacksquare$	E▶ ◀ E▶ E ♥)Q

te

*** The last case
$$(v_1 \neq 0, v_2 \neq 0, v_3 \neq 0)$$
:

$$-\frac{k_5 v_1 v_2}{v_3} + 8k_4 v_3^2 + 6k_6 v_3 - v_3 (k_3 v_3 + k_5) \frac{v_1^2 + v_2^2}{v_1 v_2} + \lambda_1 v_1^2 + \lambda_2 v_2^2 > 0,$$

$$\frac{1}{v_1 v_2 v_3} \cdot \left(v_3 \left(k_5 v_2 + 2k_1 v_1 v_3 + 2k_3 v_2 v_3\right) \left(v_1 v_2 \left(k_5 v_1 + 2k_3 v_1 v_3 + 2k_2 v_2 v_3 v_3\right) + 2k_3 v_2 v_3\right) \right)$$

$$\begin{aligned} \frac{1}{v_{1}v_{2}v_{3}} \cdot \left(v_{3}\left(k_{5}v_{2}+2k_{1}v_{1}v_{3}+2k_{3}v_{2}v_{3}\right)\left(v_{1}v_{2}\left(k_{5}v_{1}+2k_{3}v_{1}v_{3}+2k_{2}v_{2}v_{3}\right)\times\right) \\ \times \left(k_{3}v_{3}^{2}+k_{5}v_{3}+v_{1}v_{2}(\lambda_{3}+\lambda_{4})\right)-v_{1}\left(k_{5}v_{2}+2k_{1}v_{1}v_{3}+2k_{3}v_{2}v_{3}\right)\left(-k_{3}v_{1}v_{3}^{2}-k_{5}v_{1}v_{3}+\lambda_{2}v_{2}^{3}\right)\right)-v_{3}\left(k_{5}v_{1}+2k_{3}v_{1}v_{3}+2k_{2}v_{2}v_{3}\right)\left(v_{2}\left(k_{5}v_{1}+2k_{3}v_{1}v_{3}+k_{2}k_{2}v_{2}v_{3}\right)\left(-k_{3}v_{2}v_{3}^{2}-k_{5}v_{2}v_{3}+\lambda_{1}v_{1}^{3}\right)-v_{1}v_{2}\left(k_{5}v_{2}+2k_{1}v_{1}v_{3}+2k_{3}v_{2}v_{3}\right)\times\right)\times\\ \times \left(k_{3}v_{3}^{2}+k_{5}v_{3}+v_{1}v_{2}(\lambda_{3}+\lambda_{4})\right)+\left(8k_{4}v_{3}^{3}+6k_{6}v_{3}^{2}-k_{5}v_{1}v_{2}\right)\left(\left(-k_{3}v_{2}v_{3}^{2}-k_{5}v_{2}v_{3}+\lambda_{1}v_{1}^{3}\right)\left(-k_{3}v_{1}v_{3}^{2}-k_{5}v_{1}v_{3}+\lambda_{2}v_{2}^{3}\right)-v_{1}v_{2}\left(k_{3}v_{3}^{2}+k_{5}v_{3}+v_{1}v_{2}(\lambda_{3}+\lambda_{4})\right)^{2}\right)\right)>0.\end{aligned}$$

Rykova E.N. & Dolgopolov M.V. Finite-temperature effective potentials in models with exter

イロト イポト イヨト イヨト

э

Conclusion

- Our analysis of the effective MSSM and NMSSM finite-temperature potentials is based on a calculation of various one-loop temperature corrections from the squark-Higgs boson sector for the case of nonzero trilinear parameters A_t, A_b and Higgs superfield parameter μ.
- Quantum corrections are incorporated in control parameters $\lambda_{1,...7}...(T)$ of the effective two-doublet (+singlet) potential, which is then explicitly rewritten in terms of Higgs boson mass eigenstates.
- Bifurcation sets types for the two-Higgs-doublet(+singlet) potential U_{eff}(v₁, v₂) are determined.

◆□▶ ◆◎▶ ◆注≯ ◆注≯ ・注: